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3-D Green’s Functions of Microstrip Separated Into
Simpler Terms—Behavior, Mutual Interaction,
and Formulas of the Terms

Y. Leonard ChowMember, IEEEand Wan C. Tang

Abstract—Green’s functions of microstrip substrate are impor-  Chan [14], and Sarkar [15] with his pencil function method. By
tant for microwave integrated circuit (MIC) analyses. Much work  this time, the integration of the Sommerfeld integrals was no
has been done by many researchers with successes over the yearﬁ)nger tedious and lengthy. The results are the spatial Green’s

in gaining greater insight and simplifications into this complicated . - . .
problem. This paper continues this trend with further simplifi- functions required for the moment-method solution of a printed

cation by arriving at formulas with insight for the Green’s func-  Circuit.

tions, both scalar and vector. Each Green's function is separated =~ The derivation of the integrand in the Sommerfeld integral
into three terms, namely: the quasi-dynamic, leaky wave, and sur- remained tedious, especially for the multilayer media. The inte-
face wave. Practical MIC circuits require low surface-wave loss. grand is the spectral Green’s functions and the Sommerfeld in-

This means that the formulas are constructed for frequencies low t lis th tual Eourier t f ting th tral t
enough that with only the fundamental TM, surface-wave mode ‘c9ralIs the actual Fourier transiorm converting the spectral to

propagating. Formulas of dominant terms are emphasized. The the spatial. In 1999, Choet al.[9] rewrote the spectral Green’s
formulas are accurate, with estimated errors from 1% to 2%. An  functions in a product series of repetitivex22 matrices, and
important behavior observed is that the surface wave rises rapidly greatly reduced the tediousness.

with frequency, at the four power even at low frequencies. The Green’s functions, in the spectral or spatial domain, are
Index Terms—Green's function, leaky wave, microstrip, simu- obviously unique, but the intermediate set of complex images
lated image, surface wave. used for Fourier transforming is nonunique. The nonuniqueness

means that we may actually fix the image locations, say, to first
three or four of those of the static images, and still get the same
spatial Green'’s functions with similar accuracy. This simplifi-
T HIS PAF_’ER is a continuation of the simplification _and iNgation was named the simulated images method [16], [17].

| sight gained over the years on the Green'’s functions of ajn summary, this paper presents formulas for both scalar and
microstrip substrate. _vector potential Green’s functions on a grounded substrate of
~ From the 1960's to the 1980's, one used lengthy numericglsingle layer. Precisely, a vector-potential Green’s function
integration of Sommerfeld integrals, scalar and vector, fef 5 gyadic Green’s function giving the vector potential, after
full-wave solution. Mosig had a good summary of the achieVgsrming a dot product with a current vector. The formulas
ments up to 1989 [1]. For approximation, in 1968, Silvestgkciude the surface wavéM, in the three-dimensional (3-D)

[2] used the simple static images and resulted in a quasi-stafifeen’s functions. The current flow is assumed to be horizontal
solution. In 1978 and 1980, Choet al. [3], [4] modified the o, microwave circuits.

images slightly and obtained the quasi-dynamic solution that
succeeded in including dispersion at low frequencies. In 1989,
Mosig [1] then proved the equivalence between the images and
the Sommerfeld integral. The derivation of formulas of the Green’s functions is a little
In 1986, Lindell [5] introduced the continuous complexnvolved, therefore, it may be profitable for us to give a descrip-
image concept of multilayer media. In late 1980’s, Fangl. tive view of the theory.
[6] simplified the concept and produced the discrete complex The microstrip point sources of unit current and charge are
images. In the 1990’s, Choet al. dropped the term “discrete” shown in Fig. 1. Each 3-D Green'’s function, scalar or vector,
and then continued to simplify and expand the “complesan be separated into three terms, namely: 1) quasi-dynamic; 2)
images,” through a series of papers [7]-[11]. The simplificdeaky; and 3) surface waves.
tion and expansion were then carried on by others. To selectfhe quasi-dynamic term comes from the multiple images of
representative ones, we have chosen Mittra [12], Aksun [13fie source. For the scalar potential, they come from the static
reflection coefficients, between the air—dielectric interface and
) . . the ground plane for the electrostatic field and scalar potential.
Manuscript recelved December 17, 1999: fevised Octoher 19, 2000 TF%r the vector potential, since the dielectric does not reflect the
work was supported by the City University of Hong Kong under a strateglc !

grant and by the Research Grant Council of Hong Kong under a competitiigagnetostatic field, there is only one image from the ground
earmarked research grant.

! ) o . _ plane.
The authors are with the Department of Electronic Engineering, City Univer- . . . . -
sity of Hong Kong, Hong Kong (e-mail: eeylchow@cityu.edu.hk). The static reflections at the air—dielectric interface gradually
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‘r 7z I1l. THEORY—THE SEPARATION OF THESPECTRAL GREEN S
FUNCTIONS

A Green's function, scalar or vector, on the substrate surface
€0, Mo 1/, (1+K)Q in Fig. 1, has the form

o) 4

G= G(p7 tv Er, kO) (1)

3}_‘(K2-1)Q Image wherep is the distance from the source, in any horizontal direc-
separations=2t tion because of circular symmetry. Nekgnde,. are the thick-
ness and dielectric constant of the grounded substrate. Finally,
® K(K%-1)Q ko is the propagation constant in free space and is proportional
to the operating frequency. In view of this, without causing
confusion, this paper simply callg the frequency.
Fo 1 M ) ) " d o . The approach is to separate the spatial Green’s functions of
Fi. 1. Mierostip seqment on & subsate T aussrdynanic mages f YEctor.4 and charge into difierent terms. For each term, a for-
air. K = (1—=,)/(1 + =, ). Quasi-dynamic images are static images used fénula can be synthesized. Following [7], and as shown in Fig. 1,

etc

calculation with the inclusion of distance phase delay. the separations are
frequencies, which are nonzero even for the vector potential. In =G+ GRY (2a)
the dynamic case, a part of the radiative power does not reflect,

y P P Gy =Gqo+ Gyp + Gy o (2b)

but leak, through the flat dielectric interface like the leakage in
a Fabry—Perot resonator. These leaky reflections evidently gjxg indicated below (i.e., Section IV, and Table I, Figs. 8, 10, 12,

rise to the leaky-wave term. and 14), at low frequencies, the leaky-wave teif; is small.

The leakage is a function of the angle of the incident ray frofjs means that the vector Green’s function (2a) effectively has
the multiple images. The complexity of such a leakage effegfly the one dominant term, i.e., the quasi-dynafi#fg. The
can be greatly simplified by matching the complex or simulategtgjar Green’s function in (2b), on the other hand, has all three
images with the spectral Green'’s functions. For the leaky way§ms dominant at different regions along the substrate surface.
of the scalar Green’s function, the simulated images are stillone may note that the other vector Green’s functisii is
simpler. The latter have only two dominant images: at the fixgght included in (2a)G%" is not of interest since a planar circuit
guasi-dynamic image locations of the third and fourth. The COhormally does not have the(vertical) direction lines.
responding images of the vector potential are just as simple, eXAnalytically, before the separation into terms, we have the
cept that they are quite small and negligible. Sommerfeld integrals

For the scalar Green'’s function, the leaky wave provides the
bulk of the radiation. For the vector Green'’s function, the quasi-

—jkop +oo
dynamic term actually provides the bulk of its radiation. aw _ 10| © ,1 Rog(k,)
o . : 47 0 25k.0 r

Similar to the low leaky wave of the vector Green’s function e i
at low frequencies, the corresponding surface whke is ac- . e*jkz°<Z+Z')H52)(k p)k, dk } (3a)
tually zero, below cutoff. prenr

As shown in Figs. 13 and 14, each part of a Green's function ., 1 [e /%07 R | [Ran(k,) + Ry (k)]
has a different attenuation rate with distance along the substrate.” ¢~ 4x¢, p oo 2l TP e

For example at large distancgsthe inductive quasi-dynamic e o) 11(2)

field is that of a dipole and attenuates withp® on the substrate ce R CE HE (ke pp)k, dk,)} : (3b)
surface, the leaky wave being radiative, must attenuatelyijth

and the surface wave being a trapped wave must attenuate ifhihe substrate surface = 2’ = 0.

1/,/p- The different attenuation rates make the parts dominatén each equation, the first term in the outer bracket is the
in different distances, i.e., the quasi-dynamic at the near-fielflrce term. In the second term, the integrand is the spectral
region, the leaky wave at the intermediate field region, and t&een’s functions. The latter are (4a) and (4b), shown at the

surface wave at the far-field region. bottom of the following page, and as shown in
Being radiative, both the leaky and surface wave must sig-

nificantly rise with frequency, dielectric constant, and thickness bt — ko
)TE _ z z!

of the substrate. The rise of these two inevitably “floods” over "o =7 oy
the inductive quasi-dynamic field and “pushes back” the bound- kﬁ N EZ%
aries of the three regions toward the source. The “floods” and e :M (5)
“pushing backs” are pictorially observable in Fig. 13. ) ) %1 +erko
As observed later in (20), the rise in the surface wave is espe- kZo +kp =ko

cially fast, proportional to the fourth power of frequency. k2 + ki =, k3. (6)
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TABLE |
BEHAVIOR OF DIFFERENT FIELD TERMS ALONG SUBSTRATE SURFACE (LOW FREQUENCIE9

Near field - in- | Intermediate field* | Far field*
ductive - quasi-
dynamic
Distance 1/p—1/0° 1/p* = 1/p 1//p
dependence

Charge amplitude

1+ K)Q, just a little
change with ky. (K =
(1-e)/(1+e))

Eq. (16): amplox k2

(leaky wave)

Eq. (20): ampl.x
BL. B vs. ko: linear

then knee-shape rise

1485

at point "A”. (TM,
surface wave)
2Qt/e, (dc) t: sub- | N.A. N.A.

strate thickness

Dipole (charge)

amplitude

Current amplitude | I Quasi-dynamic (leaky | Quasi-dynamic (TE;

wave negligible) surface wave not ex-
cited)

Dipole (current) | 2It (dc) N.A. N.A.

amplitude

* Leaky and surface wave amplitudes of scalar Green’s function rise with kg, gradually "floods” the

near field and moves the field boundaries towards source.

The desired separation is first done in the spectral Green’s fumdiere/ is the pole location. Formulas for the pole location are
tions. That s for the vector and scalar Green'’s functions, respg@ossible with the synthetic asymptote technique.
tively, With the quasi-dynamic and surface-wave terms separated,
the leftover termsf4 and I, respectively, are the leaky wave
(Fabry—Perot) terms.
With the spectral Green'’s functions separated into terms, we
shall now convert each term to the spatial form, i.e., a formula.
(7b) This is done in different convenient ways without directly inte-
i . _ grating (3a) and (3b). A formula has the advantage that one can
where the first terms of (7a) and (7b), the quasi-dynamic, argpec its validity comprehensively and easily without massive

Rrg =Rrpo+ Fa (7a)

2
(RTE+R(1) — (RTEO+R(10) —i—Fq + /JreSq

——L j2k.oe’*=0”
k2 — 32

Ry = —e—92k=ot (8a) computation or close scruti_ny Qf its derivgtion. _ _
K(l _ 6_j4k‘0t) _ The ve_ctor Green'’s function is much different (i.e., S|mpl_er)
Ry = T (8b) in behaviors from the corresponding scalar Green’s function.
¢ ) Therefore, the formulas are presented below in separate sec-
The third term in (7b) of th&'M,, surface wave pole is tions.

1 k2
resq = <_j2k k”;) IV. VECTOR(POTENTIAL) GREEN S FUNCTION
z0 P

_ djev’kzotJr (k1t) tan(k.,t) 9  The quasi-dynamic images give the first terms in (2a) and
o [jer koot — (katt) tan(kzlt)] (2_b). The vectqr pptennal _(2a) on the supstrate surface is ob-
P ko= tained by substituting (8b) into (3a), resulting through the Som-

A. Near Field with Quasi-Dynamic Formula

TITOE + 6_j2kzlt
1+ rifei2kat
2 —jdk.1t
2k25(1 — &) (1 — eI *kat)

= 4
R’I (kzl + kzO) (kzl + E7*k;40) (1 + 7,F0Ee—j2k;1t) (1 - 7)F01\’16_j2k:1t) ( b)

Rip =— (4a)
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merfeld identity [7] in a current source term and oneimage term ~ °[
i.e., 4
—jk —jkor)] 2
wo _ Mo [ €707 eI I
%o = — - (10a)
4 < P 75 or
B -2
where ‘ﬁ: I
o 4T = == b=0.001%/2 (i) ~.
7,6 — pg + (2t)2. ioo . _ —b=0.2n/2 (i) ~. .
This is the quasi-dynamic formula of the vector Green’s func- 8| et Tl
tion. It is of interest to point out that the source and image form /L @p=2t kp=t
a current dipole of moment : . . o .
2y 3 2 1 0 1
pr =21t (10b) log(k,p)

wherel = 1 for the Green’s function by definition. Assume @

now that the operating frequency is not quasi-dynamic, but ne¢
dc (kg — 0). Then, along the surface at large distapcél0a)
becomes

e . Mo [ Prl
G%o = ym <F) . (10c)

Fig. 2(a) shows the behavior of the separated quasi-dynam ¥ P S~
field term for the vector potential with distance at two different ¢ ——b=0212 (i) ~
frequencies. In Fig. 2(a), as well as Fig. 2(b), normalized fre- ¢ RS
quencyb of Mosig [1], whereb = /e, — 1(kot), is used. The rys T
reason is thak is a gauge on the strength of the undesired sur I @ p=2t ez =~
face wave, as discussed at the conclusion of Section V-C and t \
start of Section VI, where it states that one should hiexe0.7 2 . '3 . '2 _'1 ! . !
and preferably much smaller. fogep)

To illustrate (10c), Fig. 2(a) puts in two distant markers. They
are atp = 2t andkop = 1. Marker 1 ( = 2¢) gives the limit of (b)
the inductive quasi-dynamic term from a 3|0pa¢f) to 1/p3 of Fig.2. Quasi-dynamicterms of the: (a) vector and (b) scalar Green’s functions
(100) Marker 2 kop — 1) gives the limit that the field Changesversus d|siance at dlffeient normalized frequendes=( /=, — 1kqt). The

markersp = 2t andkyp = 1 are given. The unlabeled markerj&, kqp = 1.
from inductive to radiative, as discussed in Section IV-B. The
markers indicate shifts in the attenuation of the field along di
tances.

It may be useful later at (11a) to remember that, near dc
current dipole has the same potential power dependenge on

loghtne G,

?or the small leaky wave of the vector Green’s function is not
ogtamed
Due to the radiation at nonzero frequencies, at intermediate

as a charge dipole with substrate= 1. The p dependence of and far distances, the dominant quasi-dynamic term rises up
- 3 2
the vector Green'’s function is observed in Fig. 2(a). To shotgpm azdepgn(ljgn;g Qf_d it4(10c) to reactp™*, as shown in
its similarity, the corresponding scalar Green'’s function is o 19s. 2(a). 8, 10, 12, an :
served in Fig. 2(b).
V. SCALAR (POTENTIAL) GREEN S FUNCTION
B. Intermediate and Far Field with the Quasi-Dynamic A. Near Field with Quasi-Dynamic Formula

Formula The scalar Green'’s function is obtained by substituting (8b)

The quasi-dynamic term of (10a) is still the dominant term iimto (3b), resulting through the Sommerfeld identity [7] in a

the intermediate and far field away from dc, but at low frequereharge source term and an infinite series of images, as shown
cies before the appearance of the fildf; mode. The leaky in Fig. 1, and as follows:

wave appears, but is very small and can be neglected. The simi-

larity in small and zero amplitude of the leaky and surface waves , _ (1+K) _JkOPJFZ K (K?— ) ik (11a)
is expected, as the surface wave actually comes from the leaky™ ©° — 47eqp 47r507Z
wave.

The amplitudes of this leaky wave frof, in (7a) have been where
obtained and plotted in Figs. 8, 10, 12, and 14. They are ob-
tained in the same simplicity as the scalgrin (7b), which is K=(1-¢)/(1+e)
discussed later in the section. However, the amplitude formula ri =/ p% + (2it)?, 1=1,2,3, ....
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The magnitudes of the charge images in the sum have been ob- Aklo
tained from the classical image method [2]-[4].

The multiple charge images form dipole moments with the
source. They can be summed through an integration of a geo-
metrical series resulting in a total dipole moment of G Kk,

v

z0

p=20t/e,. (11b) pole

A comparison of this electric dipole moment and the mag-
netic one in (10b) indicates that this dipole moment is surpris-
ingly much lower, divided by,., the dielectric constant. ko\/;r—
Fig. 2(b) has the same markers as Fig. 2(a). In the near field
closetothe source, itis clear that the Green'’s function attenuates
as1/p, scalar or vector. With the phase exponentials included
in (11a), the field is quasi-dynamic. In the far field of the quasi- ,
dynamic term beyond marker 1, the vector Green'’s (potentiaFf?' 8. Two data points along tf, path on the spectral plane bfo.
function has a field dependencelgfy® of (10c). It is interesting
to point out the effect of,. on the corresponding scalar Green’hird and fourth (i.e., at distances #fand6t below the source)
function. Having been divided by, in (11b), thel/,? field ~of the quasi-dynamic images. That is, we can put
dependence of the small electric dipole only emerges from the Caks ekt
low leaky and surface waves at very low frequencies, such as Fy=ag e +age™ 0 (13)
20 MHz for a substrate af = 1 mm. Also, beyond marker 2 at
highe,., the long series of multiple images has long phase dela
even in moderate frequencies; this reduces the dependenc

1/p™, where we may have — 2. . N .
/'?hevéepengence)éf tr;;p?’_;s difficult to observe directly in Following [7], as shown in Fig. 3, the two data points are
.chosen with the midpoint rule, along a straight p&thon the

the total scalar Green’s function in Figs. 7, 9, 11, and 13. As if
troduced at the conclusion of Section I, the reason is the Iea‘%?/mplex,fzo plane

and surface waves normally “flood” over and obscure the rel-

evant quasi-dynamic region. The “flooding” may move toward C1: k=0 = ko {—jto + <
the source closer than marker 2/fp = 1 at high frequency

and highe,.. This movement is understandable. As at marker 2,

in the substrate, the phase is alreg@kop = /2., largerthan 1. i taken ag /z; in this paper, thus, they are probably near the
unity. When the phase there approaches unity, one expects{Besipje leaky-wave poles. With the accurate Green’s functions
quasi-dynamic radiation becomes significant. This is even MYBtained later in Figs. 7-14, it is a good choice. This implies

so with leaky and surface wave because of their rapid rises wjfh, following. For the leaky-wave images, following the above

frequency, as discussed in later sections. procedure, it is not necessary to tediously locate the leaky-wave

T 3 ,
Th_e |n_d|rect (_effect of thel/p term of_ the scalaf Green's poles. Two somewhat nearby data points on the spectral plane
function is readily observed. This term itself is small becaugg Fig. 3 are sufficient

of the division bye,. in (11b). However, for high:,., the original

1/p dependence, close to the source, would have to make ash(g
drop to reach the small/p? term at the approximate distance
of p = ¢ (the thickness of the substrate) from the source. This 1 & o~k

sharp drop appears as fastla®® and is readily observable in Gyr = 1 Z Ggi—— (15)
a scalar Green'’s function. eo T

here the coefficients,,, are to be found through matching
numerically at two data points, each in the spedttg!
plane from (12).

t
1——0)}, 0<ty<Tp.

1o
(14)

With the coefficientse,, found, (13) can be substituted in
[ﬁ, through the Sommerfeld identity, we get

where
B. Leaky-Wave Formula

. 2 .
For the formulas of the leaky-wave region, we can rewrite i =1/p?+ [2(i + 1), i=1,2.

(7b) as follows: o ) o _ ) )
It is interesting at this point to discuss the physical basis why

only two leaky-wave images are needed and why they are lo-
2Pres, j2k.oei*==  catedinthe third and fourth image locations in Fig. 1. The leaky
kz — B2 - wave discussed in this paper is formed from multiple reflections
(12) in the substrate. A simple picture of the “rays” of the multiple
reflection indicates that the number of reflections corresponds
With numerical experimenting, it is found tha} can be ap- to the image number. With more reflections, the ray path is
proximated with only two simulated images at locations of tHenger and the ray loses its static characteristics and acquires

F, = (Rre+ Ry)— (Rrro + Ryo) —
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0
Fig. 4. Magnitudes of leaky wave (radiation) versus frequendssin Fig. 5. log-log plot of the surface-wave pole with rearranged variables. The

dielectric constants are 2.55, 9.6, and 24.

more wave characteristics. This is why the leaky-wave images ) _ )
are stronger at image locations of higher numbers of three @Hdhigh frequencies. With a little thought, the asymptotes

four. At even higher numbers, the leaky wave turns into a siid99est a rearranged surface-wave propagatitar /3. Also,

face wave, but the surface wave has already been extracted (6) Suggests a rearranged free-space propagatidor k.
The substrate thicknegss thin at the frequency of interestAnalytically, they are

in this paper. This means that the phase delay between the two

leaky wave images is small. Therefore, the amplitude of the y = 2 <10g ﬁ) (17a)
(total) leaky wave can be estimated by simply adding the ampli- loge, kot
tudes of the two images. In this way, the change of leaky-wave z = log [(g,, - 1)(k0)2] (17b)

amplitude is estimated with frequency, in terms:gf in Fig. 4,
which shows that the amplitude of the |eaky-WaV€ radiation in- With the rearranged Variab|eS, tﬁe/ersug{;o curve becomes
creases with the frequency. as shown in Fig. 5. There, the asymptotes at low and high fre-
Equations (12), (13), and (15) constitute the formula of th@uencies become simply two parallel linesjat 0 andy = 1,
leaky wave. They are not too complicated, as they are, at {d@ependent of the dielectric constant Due to the rearranged
most, 2x 2 matrices. Still, the four equations are not like ong  the dispersion witfz,. of the graphs at the intermediate fre-
equation for insight. To gain more insight about the leaky-waygjencies in Fig. 5 is greatly reduced so that they actually cross
radiation, a numerically fitted equation on the absolute mag@ipproximately at point A with the—y coordinates at (0.51,
tude (without phase and unit) from Fig. 4 and (15) is given g8633). The slope at the crossing point is a function,of

follows: With the slope and point A found, we can now neglect the
Ve —1 frequency beyond A. The reason is that the second surface-wave
lagr + ag| = 7T (kot)?. (16) modeTE; begins to propagate, as shown in Fig. 5. We may

consider the slope line passing through point A as a pseudo-
Evidently with a simple sum of two images, this amplitudasymptote.

formula cannot be very accurate compared with (15) plus (13)This asymptote together with the low frequency asymptote
and (12). The average errors are 12% to 2%, respectively. Dgay now form a synthetic asymptote through a hyperbola fit for
spite this, (16) does give an insight that the leaky-wave ampihe lower frequencies. The result is the following pole location
tude of the scalar Green’s function is proportional(at)?.  formula of TM,:
The square dependence is probably caused by the Fabry—Perot
action. This is at low frequencies before the sharp rise of sur- VeEr
face-wave power at point “A,” as discussed in the following sec- yly— 0633 —
tion.

(z —0.51)| =0.021.  (18)

The maximum error of the formula is 5% fer. = 24 at the
maximum frequency point at A. The error is less at logjeand

The original equations of surface wave pole location are thratlower frequencies.
simultaneous transcendental equations given by (4b) and (6) oEquation (17b) can be written as = logb?, and thenb
by [18]. By numerical means, one finds the pole locatibfor is the normalized frequency used by Mosig [1] in his plots of
a given frequency ik, from the three equations. the Green'’s functions. At point A in Fig. 5, = 0.714, which

Analytically, the three equations do not suggest any simpheeans that, beyond this valueiothe highefl'E;; start to prop-
formulas for the pole location other than that there are twagate and the surface wave has become too large for low-loss
asymptotes, i.ef = ko at low frequencies and = /e, k,  microstrip circuits.

C. Surface-Wave Formula
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10

10°

10"

10°

amplitude of surface wave (V/Coul.)
logldne G

10° ?
B log(k,p)
Fig. 6. Amplitude of the surface wav&M, versus frequency irk, for ) , . _ _
differente,.. Amplitude volt per coulomb is not 1 F since the field pointand Fig. 7. Scalar Green's function far, = 2.55, b = 0.01x/2. The dots
source point) do not coincide are from the formulas. The rest of the continuous plots are from the complex

image method. Markers 1 and 2 arepat= 2t andkqop = 1. The unlabeled
marker is\/e;kqp = 1. Labels:G,, = quasi-dynamic(z,, = leaky wave

After the surface-wave pole location is found, the residygabry-Perot),, = surface wavets, = sum.
res, can be calculated easily from (9). With that, we get the
spatial scalar Green’s function of the surface-wave region b

-
using the residue theorem, i.e.,

. [ ---qy
Goyow = 7o (—2mj)res, HP(Bp) B = —L-20 gD (3p)3 \ "o formula
TEY 2e0
(19)

whereres, is defined in (9) ang? = k, at low frequencies. At _ 2T
large distancey, the Hankel function of (19) indicates that the :Eo 0 I
scalar Green’s function is proportional g, /p. 5‘ A

Equations (9) and (17)-(19) form the formula of the funda- & 2
mental surface wavéM, of the scalar Green’s function. With [ ______________
the definitions of (17), (18) directly gives the pole locatjpas * T “.elll
afunction of frequency,. With pole location, (9) gives the pole 6 =2 kp=l 7=
residue. With pole residue, (19) gives the surface-wave portio \ | \
of the scalar Green’s function. 8, P’ > ; o .

Fig. 6 indicates that the log of amplitudes of the fundamenta log(kp)

surface wavel'M, of the scalar Green'’s function increases lin-
early with the log of3t at the fourth power. Its spread with ~ Fig.8. Vector Green’sfunctionfar. = 2.55, b = 0.017/2.LabelsG 40 =
is quite small. Fig. 5 indicates that, at the low frequencies coffasi-dynamici:., ; = leaky wave (Fabry-Perog;,, = sum.
cerned, the pole locatiof approaches the frequenty.

If Fig. 6 and (9) still provide insufficient physical insight,
(9) can be replaced by the curve-fitted equation from Fig. 6. T
substitute into (19), we then have the amplitude equation

resy

161\ 1, .,
/3‘—5< ) et @

2e9 Ep

The log-log plots in Fig. 6 are not exactly straight lines. This
means that (20) obviously cannot be as accurate as the formi
with (9), and (18), and (19) together. The average errors, respe
tively, are 9% and 3%. However, the above equation does gin 4
the insight that the surface-wave amplitude is proportional t
B* andt3. This 8* (8 = kg) dependence of the surface wave, [ l rpzl

1] l

compared to thgg? dependence of the leaky waves in (16), is
what enables the surface wave to “flood over” the leaky wave ¢ %,
higher frequencies, such as that in Fig. 13. This raffidepen-

dence also implies that the surface-wave amplitude can easily
rise to an intolerable limit with a small rise in frequency. Fig. 9. Scalar Green’s function fer. = 2.55, b = 0.17/2.

log(k,p)
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Fig. 10. Fig. 12. Vector Green’s function far, = 12.9, b = 0.017/2.
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. . Fig. 13. Scalar Green'’s function fer. = 12.9, b = 0.1x /2.
Fig. 11. Scalar Green'’s function fer. = 12.9, b = 0.01x/2.

VI. CONTRIBUTION AND BEHAVIOR OF THE FORMULAS TO THE 6
TOTAL GREEN S FUNCTIONS I

Each 3-D Green’s function, scalar and vector, has bee
separated into three parts, namely. 1) quasi-dynamic; 2) leal _ 2
(Fabry—Perot); and 3) surface wave. For better illustratiorE [
of their behaviors, in the figures of the Green’s functions,
each part is plotted separately and plotted in sum to form th
Green'’s function. The eight figures (i.e., Figs. 7—14) are plotte«

ol

loglG, . /(

2

for different combinations of two types of Green’s functions ™ i

(vector and scalar), two different,., and two normalized 6

frequenciesh of Mosig [1]. Here,b = /e, — 1 (kot), with

substrate thickness as mentioned at the Section IV-A.can S . . . ' o ' .

be used as a gauge to limit the strength of surface wave.

Each field term of a Green’s function has a different attenua-
tion rate with distance and behavior. These have been discussgdi4. Vector Green’s function far, = 12.9, b = 0.17/2.
in detail in the previous sections. Together, in a Green’s func-
tion, there are phase differences between different terms. Thesk Figs. 2(a) and (b), 7-14, two markers for each normalized
show up frequently as dips and at the boundaries between filelquencyb are given. Marker 14 = 2t) indicates the change
regions of near, intermediate, and far, as in Figs. 7-14. For afithe 1/ to 1/p® dependence of the inductive quasi-dynamic
overall view of the behaviors of the terms and their regions,field. Marker 2 ¢&op = 1) indicates the change in free space
summary is given in Table |. from the inductivel / p* dependence to the radiativgp? or1/p

log(k,p)
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dependence of the quasi-dynamic field. At high frequency and[7]
high ¢,., the leaky and surface waves may flood over marker 2
toward the source, as in the scalar Green’s functions of Figs. 11g,
and 13, and be discussed near the conclusion of Section V-A.
[9]
VIl. CONCLUSIONS

The Green'’s functions of a microstrip substrate, both scala g
and vector, are complicated in expression and behavior. This
makes the gives and takes in a circuit design difficult. This paper
is an effort in a series to simplify the expressions and understangl;
the behavior. The result is three small formula sets, each for
a field region of near, intermediate, and far. The formulas cal
be calculated by a small program, or by even a programmabfe ]
calculator. The accuracy is good, from 1% to 2% error.

The formulas are simple because of the separation int 3]
parts, then the formulas of the parts are derived using different
methods, whichever is the easiest and accurate. Derivatiofi4]
instead of numerical fit, is normally used in this paper to ensure
wide ranges of parameter values. [15]

The advantage of the formulas lies not so much on simplicity
itself, but on the ability for an engineer to observe from the[16]
simple formulas the trend in behavior in microwave circuit de-
signs. This is useful especially with the wide ranges of the pa-
rameter values possible for a given case. A case in point is tHa’]
rapid rise of surface-wave amplitude and, therefore, loss, with
only a small increase in frequency, as given in (20). [18]

This paper has only studied the most common case, which is
with one layer substrate and at frequencies low enough that there
is only a low-loss surface wave of thH&VI, mode propagating.
Following a similar approach, other cases, such as a two-laye
substrate, should be possible.

This paper has considered the vector Green’s funcfith
for the horizontalz-directed current source and electric field
It does not conside%” for the same current source, but thg
vertical z-directed vector Green'’s function. The reason is th
in a planar circuit, there is little vertical current to interact witl
G7.
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