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3-D Green’s Functions of Microstrip Separated Into
Simpler Terms—Behavior, Mutual Interaction,

and Formulas of the Terms
Y. Leonard Chow, Member, IEEE,and Wan C. Tang

Abstract—Green’s functions of microstrip substrate are impor-
tant for microwave integrated circuit (MIC) analyses. Much work
has been done by many researchers with successes over the years
in gaining greater insight and simplifications into this complicated
problem. This paper continues this trend with further simplifi-
cation by arriving at formulas with insight for the Green’s func-
tions, both scalar and vector. Each Green’s function is separated
into three terms, namely: the quasi-dynamic, leaky wave, and sur-
face wave. Practical MIC circuits require low surface-wave loss.
This means that the formulas are constructed for frequencies low
enough that with only the fundamentalTM0 surface-wave mode
propagating. Formulas of dominant terms are emphasized. The
formulas are accurate, with estimated errors from 1% to 2%. An
important behavior observed is that the surface wave rises rapidly
with frequency, at the four power even at low frequencies.

Index Terms—Green’s function, leaky wave, microstrip, simu-
lated image, surface wave.

I. INTRODUCTION

T HIS PAPER is a continuation of the simplification and in-
sight gained over the years on the Green’s functions of a

microstrip substrate.
From the 1960’s to the 1980’s, one used lengthy numerical

integration of Sommerfeld integrals, scalar and vector, for
full-wave solution. Mosig had a good summary of the achieve-
ments up to 1989 [1]. For approximation, in 1968, Silvester
[2] used the simple static images and resulted in a quasi-static
solution. In 1978 and 1980, Chowet al. [3], [4] modified the
images slightly and obtained the quasi-dynamic solution that
succeeded in including dispersion at low frequencies. In 1989,
Mosig [1] then proved the equivalence between the images and
the Sommerfeld integral.

In 1986, Lindell [5] introduced the continuous complex
image concept of multilayer media. In late 1980’s, Fanget al.
[6] simplified the concept and produced the discrete complex
images. In the 1990’s, Chowet al.dropped the term “discrete”
and then continued to simplify and expand the “complex
images,” through a series of papers [7]–[11]. The simplifica-
tion and expansion were then carried on by others. To select
representative ones, we have chosen Mittra [12], Aksun [13],
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Chan [14], and Sarkar [15] with his pencil function method. By
this time, the integration of the Sommerfeld integrals was no
longer tedious and lengthy. The results are the spatial Green’s
functions required for the moment-method solution of a printed
circuit.

The derivation of the integrand in the Sommerfeld integral
remained tedious, especially for the multilayer media. The inte-
grand is the spectral Green’s functions and the Sommerfeld in-
tegral is the actual Fourier transform converting the spectral to
the spatial. In 1999, Chowet al.[9] rewrote the spectral Green’s
functions in a product series of repetitive 22 matrices, and
greatly reduced the tediousness.

The Green’s functions, in the spectral or spatial domain, are
obviously unique, but the intermediate set of complex images
used for Fourier transforming is nonunique. The nonuniqueness
means that we may actually fix the image locations, say, to first
three or four of those of the static images, and still get the same
spatial Green’s functions with similar accuracy. This simplifi-
cation was named the simulated images method [16], [17].

In summary, this paper presents formulas for both scalar and
vector potential Green’s functions on a grounded substrate of
a single layer. Precisely, a vector-potential Green’s function
is a dyadic Green’s function giving the vector potential, after
forming a dot product with a current vector. The formulas
include the surface wave in the three-dimensional (3-D)
Green’s functions. The current flow is assumed to be horizontal
for microwave circuits.

II. DESCRIPTIVEVIEW OF THE THEORY

The derivation of formulas of the Green’s functions is a little
involved, therefore, it may be profitable for us to give a descrip-
tive view of the theory.

The microstrip point sources of unit current and charge are
shown in Fig. 1. Each 3-D Green’s function, scalar or vector,
can be separated into three terms, namely: 1) quasi-dynamic; 2)
leaky; and 3) surface waves.

The quasi-dynamic term comes from the multiple images of
the source. For the scalar potential, they come from the static
reflection coefficients, between the air–dielectric interface and
the ground plane for the electrostatic field and scalar potential.
For the vector potential, since the dielectric does not reflect the
magnetostatic field, there is only one image from the ground
plane.

The static reflections at the air–dielectric interface gradually
change to the dynamic ones after multiple reflections at nonzero
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Fig. 1. Microstrip segment on a substrate. The quasi-dynamic images of the
currentI and one point chargeQ of the segment are shown, for an observer in
air.K = (1� " )=(1+ " ). Quasi-dynamic images are static images used for
calculation with the inclusion of distance phase delay.

frequencies, which are nonzero even for the vector potential. In
the dynamic case, a part of the radiative power does not reflect,
but leak, through the flat dielectric interface like the leakage in
a Fabry–Perot resonator. These leaky reflections evidently give
rise to the leaky-wave term.

The leakage is a function of the angle of the incident ray from
the multiple images. The complexity of such a leakage effect
can be greatly simplified by matching the complex or simulated
images with the spectral Green’s functions. For the leaky wave
of the scalar Green’s function, the simulated images are still
simpler. The latter have only two dominant images: at the fixed
quasi-dynamic image locations of the third and fourth. The cor-
responding images of the vector potential are just as simple, ex-
cept that they are quite small and negligible.

For the scalar Green’s function, the leaky wave provides the
bulk of the radiation. For the vector Green’s function, the quasi-
dynamic term actually provides the bulk of its radiation.

Similar to the low leaky wave of the vector Green’s function
at low frequencies, the corresponding surface wave is ac-
tually zero, below cutoff.

As shown in Figs. 13 and 14, each part of a Green’s function
has a different attenuation rate with distance along the substrate.
For example at large distances, the inductive quasi-dynamic
field is that of a dipole and attenuates with on the substrate
surface, the leaky wave being radiative, must attenuate with,
and the surface wave being a trapped wave must attenuate with

. The different attenuation rates make the parts dominate
in different distances, i.e., the quasi-dynamic at the near-field
region, the leaky wave at the intermediate field region, and the
surface wave at the far-field region.

Being radiative, both the leaky and surface wave must sig-
nificantly rise with frequency, dielectric constant, and thickness
of the substrate. The rise of these two inevitably “floods” over
the inductive quasi-dynamic field and “pushes back” the bound-
aries of the three regions toward the source. The “floods” and
“pushing backs” are pictorially observable in Fig. 13.

As observed later in (20), the rise in the surface wave is espe-
cially fast, proportional to the fourth power of frequency.

III. T HEORY—THE SEPARATION OF THESPECTRAL GREEN’S
FUNCTIONS

A Green’s function, scalar or vector, on the substrate surface
in Fig. 1, has the form

(1)

where is the distance from the source, in any horizontal direc-
tion because of circular symmetry. Next,and are the thick-
ness and dielectric constant of the grounded substrate. Finally,

is the propagation constant in free space and is proportional
to the operating frequency. In view of this, without causing
confusion, this paper simply calls the frequency.

The approach is to separate the spatial Green’s functions of
vector and charge into different terms. For each term, a for-
mula can be synthesized. Following [7], and as shown in Fig. 1,
the separations are

(2a)

(2b)

As indicated below (i.e., Section IV, and Table I, Figs. 8, 10, 12,
and 14), at low frequencies, the leaky-wave term is small.
This means that the vector Green’s function (2a) effectively has
only the one dominant term, i.e., the quasi-dynamic . The
scalar Green’s function in (2b), on the other hand, has all three
terms dominant at different regions along the substrate surface.

One may note that the other vector Green’s function is
not included in (2a). is not of interest since a planar circuit
normally does not have the(vertical) direction lines.

Analytically, before the separation into terms, we have the
Sommerfeld integrals

(3a)

(3b)

On the substrate surface, .
In each equation, the first term in the outer bracket is the

source term. In the second term, the integrand is the spectral
Green’s functions. The latter are (4a) and (4b), shown at the
bottom of the following page, and as shown in

(5)

(6)
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TABLE I
BEHAVIOR OF DIFFERENTFIELD TERMS ALONG SUBSTRATE SURFACE (LOW FREQUENCIES)

The desired separation is first done in the spectral Green’s func-
tions. That is for the vector and scalar Green’s functions, respec-
tively,

(7a)

(7b)

where the first terms of (7a) and (7b), the quasi-dynamic, are

(8a)

(8b)

The third term in (7b) of the surface wave pole is

(9)

where is the pole location. Formulas for the pole location are
possible with the synthetic asymptote technique.

With the quasi-dynamic and surface-wave terms separated,
the leftover terms, and , respectively, are the leaky wave
(Fabry–Perot) terms.

With the spectral Green’s functions separated into terms, we
shall now convert each term to the spatial form, i.e., a formula.
This is done in different convenient ways without directly inte-
grating (3a) and (3b). A formula has the advantage that one can
check its validity comprehensively and easily without massive
computation or close scrutiny of its derivation.

The vector Green’s function is much different (i.e., simpler)
in behaviors from the corresponding scalar Green’s function.
Therefore, the formulas are presented below in separate sec-
tions.

IV. V ECTOR(POTENTIAL) GREEN’S FUNCTION

A. Near Field with Quasi-Dynamic Formula

The quasi-dynamic images give the first terms in (2a) and
(2b). The vector potential (2a) on the substrate surface is ob-
tained by substituting (8b) into (3a), resulting through the Som-

(4a)

(4b)
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merfeld identity [7] in a current source term and one image term,
i.e.,

(10a)

where

This is the quasi-dynamic formula of the vector Green’s func-
tion. It is of interest to point out that the source and image form
a current dipole of moment

(10b)

where for the Green’s function by definition. Assume
now that the operating frequency is not quasi-dynamic, but near
dc . Then, along the surface at large distance, (10a)
becomes

(10c)

Fig. 2(a) shows the behavior of the separated quasi-dynamic
field term for the vector potential with distance at two different
frequencies. In Fig. 2(a), as well as Fig. 2(b), normalized fre-
quency of Mosig [1], where , is used. The
reason is that is a gauge on the strength of the undesired sur-
face wave, as discussed at the conclusion of Section V-C and the
start of Section VI, where it states that one should have
and preferably much smaller.

To illustrate (10c), Fig. 2(a) puts in two distant markers. They
are at and . Marker 1 ( ) gives the limit of
the inductive quasi-dynamic term from a slope of to of
(10c). Marker 2 ( ) gives the limit that the field changes
from inductive to radiative, as discussed in Section IV-B. The
markers indicate shifts in the attenuation of the field along dis-
tances.

It may be useful later at (11a) to remember that, near dc, a
current dipole has the same potential power dependence on
as a charge dipole with substrate . The dependence of
the vector Green’s function is observed in Fig. 2(a). To show
its similarity, the corresponding scalar Green’s function is ob-
served in Fig. 2(b).

B. Intermediate and Far Field with the Quasi-Dynamic
Formula

The quasi-dynamic term of (10a) is still the dominant term in
the intermediate and far field away from dc, but at low frequen-
cies before the appearance of the first mode. The leaky
wave appears, but is very small and can be neglected. The simi-
larity in small and zero amplitude of the leaky and surface waves
is expected, as the surface wave actually comes from the leaky
wave.

The amplitudes of this leaky wave from in (7a) have been
obtained and plotted in Figs. 8, 10, 12, and 14. They are ob-
tained in the same simplicity as the scalarin (7b), which is
discussed later in the section. However, the amplitude formula

(a)

(b)

Fig. 2. Quasi-dynamic terms of the: (a) vector and (b) scalar Green’s functions
versus distance at different normalized frequencies (b =

p
" � 1k t). The

markers� = 2t andk � = 1 are given. The unlabeled marker is
p
" k � = 1.

for the small leaky wave of the vector Green’s function is not
obtained.

Due to the radiation at nonzero frequencies, at intermediate
and far distances, the dominant quasi-dynamic term rises up
from a dependence of at (10c) to reach , as shown in
Figs. 2(a), 8, 10, 12, and 14.

V. SCALAR (POTENTIAL) GREEN’S FUNCTION

A. Near Field with Quasi-Dynamic Formula

The scalar Green’s function is obtained by substituting (8b)
into (3b), resulting through the Sommerfeld identity [7] in a
charge source term and an infinite series of images, as shown
in Fig. 1, and as follows:

(11a)

where
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The magnitudes of the charge images in the sum have been ob-
tained from the classical image method [2]–[4].

The multiple charge images form dipole moments with the
source. They can be summed through an integration of a geo-
metrical series resulting in a total dipole moment of

(11b)

A comparison of this electric dipole moment and the mag-
netic one in (10b) indicates that this dipole moment is surpris-
ingly much lower, divided by , the dielectric constant.

Fig. 2(b) has the same markers as Fig. 2(a). In the near field
close to the source, it is clear that the Green’s function attenuates
as , scalar or vector. With the phase exponentials included
in (11a), the field is quasi-dynamic. In the far field of the quasi-
dynamic term beyond marker 1, the vector Green’s (potential)
function has a field dependence of of (10c). It is interesting
to point out the effect of on the corresponding scalar Green’s
function. Having been divided by in (11b), the field
dependence of the small electric dipole only emerges from the
low leaky and surface waves at very low frequencies, such as
20 MHz for a substrate of mm. Also, beyond marker 2 at
high , the long series of multiple images has long phase delays
even in moderate frequencies; this reduces the dependence to

, where we may have .
The dependence of the is difficult to observe directly in

the total scalar Green’s function in Figs. 7, 9, 11, and 13. As in-
troduced at the conclusion of Section II, the reason is the leaky
and surface waves normally “flood” over and obscure the rel-
evant quasi-dynamic region. The “flooding” may move toward
the source closer than marker 2 of at high frequency
and high . This movement is understandable. As at marker 2,
in the substrate, the phase is already , larger than
unity. When the phase there approaches unity, one expects the
quasi-dynamic radiation becomes significant. This is even more
so with leaky and surface wave because of their rapid rises with
frequency, as discussed in later sections.

The indirect effect of the term of the scalar Green’s
function is readily observed. This term itself is small because
of the division by in (11b). However, for high , the original

dependence, close to the source, would have to make a sharp
drop to reach the small term at the approximate distance
of (the thickness of the substrate) from the source. This
sharp drop appears as fast as and is readily observable in
a scalar Green’s function.

B. Leaky-Wave Formula

For the formulas of the leaky-wave region, we can rewrite
(7b) as follows:

(12)

With numerical experimenting, it is found that can be ap-
proximated with only two simulated images at locations of the

Fig. 3. Two data points along theC path on the spectral plane ofk .

third and fourth (i.e., at distances ofand below the source)
of the quasi-dynamic images. That is, we can put

(13)

where the coefficients are to be found through matching
(13) numerically at two data points, each in the spectral
plane from (12).

Following [7], as shown in Fig. 3, the two data points are
chosen with the midpoint rule, along a straight pathon the
complex plane

(14)

is taken as in this paper, thus, they are probably near the
possible leaky-wave poles. With the accurate Green’s functions
obtained later in Figs. 7–14, it is a good choice. This implies
the following. For the leaky-wave images, following the above
procedure, it is not necessary to tediously locate the leaky-wave
poles. Two somewhat nearby data points on the spectral plane
in Fig. 3 are sufficient.

With the coefficients found, (13) can be substituted in
(3b), through the Sommerfeld identity, we get

(15)

where

It is interesting at this point to discuss the physical basis why
only two leaky-wave images are needed and why they are lo-
cated in the third and fourth image locations in Fig. 1. The leaky
wave discussed in this paper is formed from multiple reflections
in the substrate. A simple picture of the “rays” of the multiple
reflection indicates that the number of reflections corresponds
to the image number. With more reflections, the ray path is
longer and the ray loses its static characteristics and acquires
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Fig. 4. Magnitudes of leaky wave (radiation) versus frequency ink .

more wave characteristics. This is why the leaky-wave images
are stronger at image locations of higher numbers of three and
four. At even higher numbers, the leaky wave turns into a sur-
face wave, but the surface wave has already been extracted.

The substrate thicknessis thin at the frequency of interest
in this paper. This means that the phase delay between the two
leaky wave images is small. Therefore, the amplitude of the
(total) leaky wave can be estimated by simply adding the ampli-
tudes of the two images. In this way, the change of leaky-wave
amplitude is estimated with frequency, in terms of in Fig. 4,
which shows that the amplitude of the leaky-wave radiation in-
creases with the frequency.

Equations (12), (13), and (15) constitute the formula of the
leaky wave. They are not too complicated, as they are, at the
most, 2 2 matrices. Still, the four equations are not like one
equation for insight. To gain more insight about the leaky-wave
radiation, a numerically fitted equation on the absolute magni-
tude (without phase and unit) from Fig. 4 and (15) is given as
follows:

(16)

Evidently with a simple sum of two images, this amplitude
formula cannot be very accurate compared with (15) plus (13)
and (12). The average errors are 12% to 2%, respectively. De-
spite this, (16) does give an insight that the leaky-wave ampli-
tude of the scalar Green’s function is proportional to .
The square dependence is probably caused by the Fabry–Perot
action. This is at low frequencies before the sharp rise of sur-
face-wave power at point “A,” as discussed in the following sec-
tion.

C. Surface-Wave Formula

The original equations of surface wave pole location are three
simultaneous transcendental equations given by (4b) and (6) or
by [18]. By numerical means, one finds the pole locationfor
a given frequency in from the three equations.

Analytically, the three equations do not suggest any simple
formulas for the pole location other than that there are two
asymptotes, i.e., at low frequencies and

Fig. 5. log-log plot of the surface-wave pole with rearranged variables. The
dielectric constants are 2.55, 9.6, and 24.

at high frequencies. With a little thought, the asymptotes
suggest a rearranged surface-wave propagationfor . Also,
(6) suggests a rearranged free-space propagationfor .
Analytically, they are

(17a)

(17b)

With the rearranged variables, theversus curve becomes
as shown in Fig. 5. There, the asymptotes at low and high fre-
quencies become simply two parallel lines at and ,
independent of the dielectric constant. Due to the rearranged

, the dispersion with of the graphs at the intermediate fre-
quencies in Fig. 5 is greatly reduced so that they actually cross
approximately at point A with the – coordinates at (0.51,
0.633). The slope at the crossing point is a function of.

With the slope and point A found, we can now neglect the
frequency beyond A. The reason is that the second surface-wave
mode begins to propagate, as shown in Fig. 5. We may
consider the slope line passing through point A as a pseudo-
asymptote.

This asymptote together with the low frequency asymptote
may now form a synthetic asymptote through a hyperbola fit for
the lower frequencies. The result is the following pole location
formula of :

(18)

The maximum error of the formula is 5% for at the
maximum frequency point at A. The error is less at lowerand
at lower frequencies.

Equation (17b) can be written as , and then
is the normalized frequency used by Mosig [1] in his plots of
the Green’s functions. At point A in Fig. 5, , which
means that, beyond this value of, the higher start to prop-
agate and the surface wave has become too large for low-loss
microstrip circuits.
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Fig. 6. Amplitude of the surface waveTM versus frequency ink for
different" . Amplitude volt per coulomb is not 1 F since the field pointV and
source pointQ do not coincide.

After the surface-wave pole location is found, the residue
can be calculated easily from (9). With that, we get the

spatial scalar Green’s function of the surface-wave region by
using the residue theorem, i.e.,

(19)
where is defined in (9) and at low frequencies. At
large distance , the Hankel function of (19) indicates that the
scalar Green’s function is proportional to .

Equations (9) and (17)–(19) form the formula of the funda-
mental surface wave of the scalar Green’s function. With
the definitions of (17), (18) directly gives the pole locationas
a function of frequency . With pole location, (9) gives the pole
residue. With pole residue, (19) gives the surface-wave portion
of the scalar Green’s function.

Fig. 6 indicates that the log of amplitudes of the fundamental
surface wave of the scalar Green’s function increases lin-
early with the log of at the fourth power. Its spread with
is quite small. Fig. 5 indicates that, at the low frequencies con-
cerned, the pole location approaches the frequency.

If Fig. 6 and (9) still provide insufficient physical insight,
(9) can be replaced by the curve-fitted equation from Fig. 6. To
substitute into (19), we then have the amplitude equation

(20)

The log-log plots in Fig. 6 are not exactly straight lines. This
means that (20) obviously cannot be as accurate as the formula
with (9), and (18), and (19) together. The average errors, respec-
tively, are 9% and 3%. However, the above equation does give
the insight that the surface-wave amplitude is proportional to

and . This ( ) dependence of the surface wave,
compared to the dependence of the leaky waves in (16), is
what enables the surface wave to “flood over” the leaky wave at
higher frequencies, such as that in Fig. 13. This rapiddepen-
dence also implies that the surface-wave amplitude can easily
rise to an intolerable limit with a small rise in frequency.

Fig. 7. Scalar Green’s function for" = 2:55; b = 0:01�=2. The dots
are from the formulas. The rest of the continuous plots are from the complex
image method. Markers 1 and 2 are at� = 2t andk � = 1. The unlabeled
marker is

p
" k � = 1. Labels:G = quasi-dynamic,G = leaky wave

(Fabry–Perot),G = surface wave,G = sum.

Fig. 8. Vector Green’s function for" = 2:55; b = 0:01�=2.Labels:G =

quasi-dynamic,G = leaky wave (Fabry–Perot),G = sum.

Fig. 9. Scalar Green’s function for" = 2:55; b = 0:1�=2.
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Fig. 10. Vector Green’s function for" = 2:55; b = 0:1�=2.

Fig. 11. Scalar Green’s function for" = 12:9; b = 0:01�=2.

VI. CONTRIBUTION AND BEHAVIOR OF THEFORMULAS TO THE

TOTAL GREEN’S FUNCTIONS

Each 3-D Green’s function, scalar and vector, has been
separated into three parts, namely. 1) quasi-dynamic; 2) leaky
(Fabry–Perot); and 3) surface wave. For better illustration
of their behaviors, in the figures of the Green’s functions,
each part is plotted separately and plotted in sum to form the
Green’s function. The eight figures (i.e., Figs. 7–14) are plotted
for different combinations of two types of Green’s functions
(vector and scalar), two different , and two normalized
frequencies of Mosig [1]. Here, , with
substrate thickness, as mentioned at the Section IV-A.can
be used as a gauge to limit the strength of surface wave.

Each field term of a Green’s function has a different attenua-
tion rate with distance and behavior. These have been discussed
in detail in the previous sections. Together, in a Green’s func-
tion, there are phase differences between different terms. These
show up frequently as dips and at the boundaries between field
regions of near, intermediate, and far, as in Figs. 7–14. For an
overall view of the behaviors of the terms and their regions, a
summary is given in Table I.

Fig. 12. Vector Green’s function for" = 12:9; b = 0:01�=2.

Fig. 13. Scalar Green’s function for" = 12:9; b = 0:1�=2.

Fig. 14. Vector Green’s function for" = 12:9; b = 0:1�=2.

In Figs. 2(a) and (b), 7–14, two markers for each normalized
frequency are given. Marker 1 ( ) indicates the change
of the to dependence of the inductive quasi-dynamic
field. Marker 2 ( ) indicates the change in free space
from the inductive dependence to the radiative or
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dependence of the quasi-dynamic field. At high frequency and
high , the leaky and surface waves may flood over marker 2
toward the source, as in the scalar Green’s functions of Figs. 11
and 13, and be discussed near the conclusion of Section V-A.

VII. CONCLUSIONS

The Green’s functions of a microstrip substrate, both scalar
and vector, are complicated in expression and behavior. This
makes the gives and takes in a circuit design difficult. This paper
is an effort in a series to simplify the expressions and understand
the behavior. The result is three small formula sets, each for
a field region of near, intermediate, and far. The formulas can
be calculated by a small program, or by even a programmable
calculator. The accuracy is good, from 1% to 2% error.

The formulas are simple because of the separation into
parts, then the formulas of the parts are derived using different
methods, whichever is the easiest and accurate. Derivation,
instead of numerical fit, is normally used in this paper to ensure
wide ranges of parameter values.

The advantage of the formulas lies not so much on simplicity
itself, but on the ability for an engineer to observe from the
simple formulas the trend in behavior in microwave circuit de-
signs. This is useful especially with the wide ranges of the pa-
rameter values possible for a given case. A case in point is the
rapid rise of surface-wave amplitude and, therefore, loss, with
only a small increase in frequency, as given in (20).

This paper has only studied the most common case, which is
with one layer substrate and at frequencies low enough that there
is only a low-loss surface wave of the mode propagating.
Following a similar approach, other cases, such as a two-layer
substrate, should be possible.

This paper has considered the vector Green’s function
for the horizontal -directed current source and electric field.
It does not consider for the same current source, but the
vertical -directed vector Green’s function. The reason is that,
in a planar circuit, there is little vertical current to interact with

.
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